NUMPY.APPEND
() IN PYTHON:
v
This function adds values at the end of an input
array as the name suggests, append means adding something.
v
The numpy.append() function is used to add or
append new values to an existing numpy array.
v
This function adds the new values at the end of
the array.
SYNTAX:
numpy.append(
arr, values, axis=None)
![]()
SAMPLE
INPUT:
import numpy as np
a=np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b=np.array([[10, 20, 30], [40, 50, 60], [70, 80, 90]])
c=np.append(a,b)
c
OUTPUT:
array([ 1, 2, 3,
4, 5, 6, 7, 8, 9,
10, 20, 30, 40, 50, 60, 70, 80,90])
NumPy Broadcasting
v The
term broadcasting refers to the ability of NumPy to treat
arrays of different shapes during arithmetic operations
v
NumPy can perform such operations where the
array of different shapes are involved.
Example
v
If we consider the matrix multiplication
operation, if the shape of the two matrices is the same then this operation
will be easily performed.
v
However, we may also need to operate if the shape is not similar.
![]()
Sample Input:
import numpy as np
a = np.array([1,2,3,4,5,6,7])
b = np.array([2,4,6,8,10,12,14])
c = a*b;
print(c)
Output:
[
2 8 18 32 50 72 98]
NUMPY.ARRANGE()
IN PYTHON:
v
It creates an array by using the evenly spaced
values over the given interval.
v
The interval mentioned is half opened i.e.
[Start, Stop]).
v
NumPy arange() is one of the array
creation routines based on numerical ranges
v It creates an instance of
ndarray with evenly spaced values and returns the reference to it.
SYNTAX:
numpy.arrange(start, stop, step, dtype)
PARAMETERS:
It accepts the following parameters.
- start: The starting of an
interval. The default is 0.
- stop: represents the value
at which the interval ends excluding this value.
- step: The number by which
the interval values change.
- dtype: the data type of the
numpy array items.
![]()
SAMPLE INPUT:
1. import numpy as np
2. arr = np.arange(0,12,2,float)
3. print(arr)
OUTPUT:
[ 0. 2. 4. 6. 8.10]
v The numpy
module of Python provides a function called numpy.
v
Average (), used for calculating the weighted average along the
specified axis.
SYNTAX:
Numpy.average(a, axis=None, weights=None, returned=False)
![]()
SAMPLE INPUT:
import numpy as np
data = list (range (1,7))
output=np. average(data)
data
output
OUTPUT:
[1, 2, 3, 4, 5, 6]
3.5
Numpy ceil()
v
This function returns the ceil value of the input
array elements.
v
The floor of a number x is i if i is the smallest
integer such that, i>=x.
Syntax:
numpy.ceil(array)
Parameters:
array: Array
elements whose ceil values are to be calculated.
![]()
Sample Input:
import numpy as np
arr = [0.23, 0.09, 1.2, 1.24, 9.90]
print("Input array:",arr)
r_arr = np.ceil(arr)
print("Output array:",r_arr)
arr2 = [145.23, 0.12, 12.34, 123]
r_arr2=np.ceil(arr2)
print("Input array:",arr2)
print("Output array:",r_arr2)
Output:
Input array: [0.23, 0.09, 1.2, 1.24,
9.90]
Output array: [ 1. 1.
2. 2. 10.]
Input array: [145.26, 1.12, 13.34, 123]
Output array: [146. 2. 14.
123.]
NUMPY.CLIP()
IN PYTHON
v
function is used to Clip
(limit) the values in an array.
v
In the clip() function, we will pass the
interval, and the values which are outside the interval will be clipped for the
interval edges.
SYNTAX:
numpy.clip(a,
a_min, a_max, out=None)
![]()
SAMPLE
INPUT:
import numpy as np
x= np.arange(12)
y=np.clip(x, 3, 11)
y
SAMPLE OUTPUT:
Array ([ 3, 3, 3, 3, 4, 5, 6, 7, 8,
9,10,11,11])
NUMPY CONCATENATE() IN PYTHON
v
The concatenate () function is a function from
the NumPy package. This function essentially combines NumPy arrays together.
v
This function is basically used for joining two
or more arrays of the same shape along a specified axis.
There are the following things which are
essential to keep in mind:
v
NumPy's concatenate () is not like a traditional
database join. It is like stacking NumPy arrays.
v
This function can operate both vertically and
horizontally. This means we can concatenate arrays together horizontally or
vertically.
![]()

The concatenate () function is usually written as
np.concatenate(), but we can also write it as numpy.concatenate().
SYNTAX:
numpy.concatenate((a1, a2, ...), axis)
SAMPLE
INPUT:
import numpy as np
x=np.array([[1,3],[2,4]])
y=np.array([[12,30]])
z=np.concatenate((x,y))
z
OUTPUT:
array([[ 1, 3],[ 2,
4],[12, 30]])
NUMPY.dot() in python:
v The
function is used to perform a product of two dot arrays.
v If both the arrays 'a' and 'b' are
1-dimensional arrays, the dot() function performs the inner product of vectors
(without complex conjugation).
v If both the arrays 'a' and 'b' are
2-dimensional arrays, the dot() function performs the matrix multiplication.
But for matrix multiplication use of matmul or 'a' @
'b' is preferred.
v If either
'a' or 'b' is 0-dimensional (scalar), the dot() function performs
multiplication. Also, the use of numpy.multiply(a,
b) or a
*b method is preferred.
SYNTAX:
Numpy.dot(a,b,out=None)
![]()
SAMPLE INPUT
import numpy as np
a=np.dot(8,12)
a
OUTPUT:
96
NUMPY FLOOR() IN PYTHON:
v
This function returns the floor value of the
input array elements.
v
The floor of a number x is i if i is the largest integer such
that, i<=x.
SYNTAX:
numpy.floor(array)
![]()
SAMPLE INPUT:
import numpy as np
in_array = [.5, 1.5, 2.5, 3.5,
4.5, 10.1]
print ("Input array :
\n", in_array)
floor off values = np.floor( in
array)
print ("\n Rounded values :
\n", floor off values)
in_array = [.53, 1.54, .71]
print ("\nInput array :
\n", in_array)
flooroff_values = np.floor(in_array)
print ("\n Rounded values :
\n", flooroff_values)
in_array = [.5538, 1.33354,
.71445]
print ("\n Input array :
\n", in_array)
flooroff_values =
np.floor(in_array)
print ("\n Rounded values :
\n", flooroff_values)
OUTPUT:
Input array:
[0.5, 1.5, 2.5, 3.5, 4.5, 10.1]
Rounded values:
[ 0. 1. 2. 3. 4. 10.]
Input array:
[0.53, 1.54, 0.71]
Rounded Values:
[ 0. 1. 0.]
Input array:
[0.5538, 1.33354, 0.71445]
Rounded
Values:
[ 0. 1. 0.]
NUMPY.FROMBUFFER()
v This
function is used to create an array by using the specified buffer.
SYNTAX:
numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)
PARAMETERS
It accepts the following parameters.
v buffer: It
represents an object that exposes a buffer interface.
v dtype: It
represents the data type of the returned data type array. The default value is
0.
v count: It represents the length of the
returned ndarray.
v offset: It represents the starting
position to read from. The default value is 0.
![]()
SAMPLE
INPUT:
import numpy as np
l = c'hello world'
print(type(l))
a = np.frombuffer(l, dtype = "S1")
print(a)
print(type(a))
OUTPUT:
[c'h' c'e' c'l' c'l' c'o'
c' ' c'w' c'o' c'r' c'l' c'd']
NUMPY HYPOT() METHOD:
v
This function is used to calculate the hypotenuse
for the right angled triangle
v The hypotenuse of the
right angle is calculated as:
SYNTAX
numpy.hypot(array1, array2 out)
PARAMETERS:
- array1: It is the input
array of bases of the given right angled triangles.
- array2: It is the input
array of perpendiculars of the given right angled triangles.
- Out: It is the shape of the
output array.
![]()
SAMPLE INPUT:
import numpy as np
base = [10,2,5,50]
per= [3,10,23,6]
print("Input base array:",base)
print("Input perpendicular array:",per)
hyp = np.hypot(base,per)
print("hypotenuse ",hyp)
OUTPUT:
Input base array: [10, 2, 5, 50]
Input perpendicular array: [3, 10, 23,
6]
hypotenuse[10.44030651 10.19803903 23.53720459
50.35871325]
NUMPY.LINSPACE()
v It is
similar to the arrange function.
v It only
returns evenly separated values over a specified period.
v The system
implicitly calculates the step size.
SYNTAX:
numpy.linspace(start, stop, num, endpoint, retstep, dtype)
PARAMETERS:
It accepts the following parameters
v start: It represents the starting value
of the interval.
v stop:It represents the stopping value
of the interval.
v num: The amount of evenly spaced
samples over the interval to be generated. The default is 50.
v endpoint: Its true value indicates that
the stopping value is included in the interval.
v rettstep: This has to be a boolean
value. Represents the steps and samples between the consecutive numbers.
v dtype: It represents the data type of
the array items.
![]()
SAMPLE
INPUT:
import numpy as np
arr = np.linspace(10, 20, 5)
print("The array over the given range is ",arr)
OUTPUT:
The array over the given range is
[10. 12.5 15. 17.5 20.]
NUMPY.MATLIB.ONES()
v This
function is used to return a new matrix with the values initialized to ones.
SYNTAX:
numpy.matlib.ones(shape,dtype,order)
PARAMETERS:
It accepts the following parameters.
v shape: It is the Tuple defining the
shape of the matrix.
v dtype: It is the data type of the
matrix.
v order: It is the insertion order of the
matrix.
![]()
SAMPLE
INPUT:
import numpy as np
import numpy.matlib
print(numPy.matlib.ones((3,3)))
OUPUT:
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]
numpy.mean() in python
v The sum of
elements, along with an axis divided by the number of elements, is known
as arithmetic
mean.
v The
numpy.mean() function is used to compute the arithmetic mean along the
specified axis.
v This
function returns the average of the array elements
v By default,
the average is taken on the flattened array. Else on the specified axis, float
64 is intermediate as well as return values are used for integer inputs
SYNTAX:
numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>)
![]()
SAMPLE CODE:
import numpy as np
a = np.array([[1, 2], [3, 4]])
b=np.mean(a)
b
x = np.array([[5, 6], [7, 34]])
y=np.mean(x)
y
OUTPUT:
2.5
13.0
EXAMPLE 2:
import numpy as np
a = np.array([[2, 4], [3, 5]])
b=np.mean(a,axis=0)
c=np.mean(a,axis=1)
b
c
OUTPUT:
array([2.5, 4.5])
array([3., 4.])
v
This module used to provide a numpy.save()
function.
v
To extention an array into a binary file in .npy
format
v
In many of the cases, we require data in binary
format to manipulate it.
SYNTAX:
numpy.save(file, arr, allow_pickle=True, fix_imports=True)
![]()
SAMPLE INPUT:
import numpy as np
from tempfile import TemporaryFile
out_file = TemporaryFile()
x=np.arange(16)
np.save(out_file, x)
_=out_file.seek(1) # Only needed here to simulate closing & reopening file
np.load(outfile)
OUTPUT:
array([ 1, 2,
3, 4, 5,
6, 7, 8, 9,
10, 11, 12, 13, 14,15])
NUMPY
STATISTICAL FUNCTIONS:
v
Numpy has quite a few useful statistical
functions for finding minimum, maximum, percentile standard deviation and
variance, etc. from the given elements in the array.
![]()
|
Function |
NumPy |
|
Min |
np. min() |
|
Max |
np. max() |
|
Mean |
np. mean() |
|
Median |
np. median() |
|
Standard deviation |
np. std() |
SAMPLE CODE:
SAMPLE INPUT:
Import NumPy as
np
normal_ array=np.
random. normal (5,0.5,10)
print (normal_
array)
OUTPUT:
[5.56171852 4.84233558 4.65392767 4.946659 4.85165567 5.61211317 4.46704244 5.22675736 4.49888936 4.68731125]
Example:
Statistical function
### Min print (np. min(normal_ array)) ### Max print (np. max(normal_ array)) ### Mean print (np. mean(normal_ array))### Medianprint (np. median(normal_ array))### Sdprint (np. std(normal_ array))
OUTPUT:
4.4670424352669135.6121131719902014.9348410022705934.8469956257866630.3875019367395316
Comments
Post a Comment