NUMPY.APPEND
() IN PYTHON:
v
This function adds values at the end of an input
array as the name suggests, append means adding something.
v
The numpy.append() function is used to add or
append new values to an existing numpy array.
v
This function adds the new values at the end of
the array.
SYNTAX:
numpy.append(
arr, values, axis=None)
SAMPLE
INPUT:
import numpy as np
a=np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b=np.array([[10, 20, 30], [40, 50, 60], [70, 80, 90]])
c=np.append(a,b)
c
OUTPUT:
array([ 1, 2, 3,
4, 5, 6, 7, 8, 9,
10, 20, 30, 40, 50, 60, 70, 80,90])
NumPy Broadcasting
v The
term broadcasting refers to the ability of NumPy to treat
arrays of different shapes during arithmetic operations
v
NumPy can perform such operations where the
array of different shapes are involved.
Example
v
If we consider the matrix multiplication
operation, if the shape of the two matrices is the same then this operation
will be easily performed.
v
However, we may also need to operate if the shape is not similar.
Sample Input:
import numpy as np
a = np.array([1,2,3,4,5,6,7])
b = np.array([2,4,6,8,10,12,14])
c = a*b;
print(c)
Output:
[
2 8 18 32 50 72 98]
NUMPY.ARRANGE()
IN PYTHON:
v
It creates an array by using the evenly spaced
values over the given interval.
v
The interval mentioned is half opened i.e.
[Start, Stop]).
v
NumPy arange() is one of the array
creation routines based on numerical ranges
v It creates an instance of
ndarray with evenly spaced values and returns the reference to it.
SYNTAX:
numpy.arrange(start, stop, step, dtype)
PARAMETERS:
It accepts the following parameters.
- start: The starting of an
interval. The default is 0.
- stop: represents the value
at which the interval ends excluding this value.
- step: The number by which
the interval values change.
- dtype: the data type of the
numpy array items.
SAMPLE INPUT:
1. import numpy as np
2. arr = np.arange(0,12,2,float)
3. print(arr)
OUTPUT:
[ 0. 2. 4. 6. 8.10]
v The numpy
module of Python provides a function called numpy.
v
Average (), used for calculating the weighted average along the
specified axis.
SYNTAX:
Numpy.average(a, axis=None, weights=None, returned=False)
SAMPLE INPUT:
import numpy as np
data = list (range (1,7))
output=np. average(data)
data
output
OUTPUT:
[1, 2, 3, 4, 5, 6]
3.5
Numpy ceil()
v
This function returns the ceil value of the input
array elements.
v
The floor of a number x is i if i is the smallest
integer such that, i>=x.
Syntax:
numpy.ceil(array)
Parameters:
array: Array
elements whose ceil values are to be calculated.
Sample Input:
import numpy as np
arr = [0.23, 0.09, 1.2, 1.24, 9.90]
print("Input array:",arr)
r_arr = np.ceil(arr)
print("Output array:",r_arr)
arr2 = [145.23, 0.12, 12.34, 123]
r_arr2=np.ceil(arr2)
print("Input array:",arr2)
print("Output array:",r_arr2)
Output:
Input array: [0.23, 0.09, 1.2, 1.24,
9.90]
Output array: [ 1. 1.
2. 2. 10.]
Input array: [145.26, 1.12, 13.34, 123]
Output array: [146. 2. 14.
123.]
NUMPY.CLIP()
IN PYTHON
v
function is used to Clip
(limit) the values in an array.
v
In the clip() function, we will pass the
interval, and the values which are outside the interval will be clipped for the
interval edges.
SYNTAX:
numpy.clip(a,
a_min, a_max, out=None)
SAMPLE
INPUT:
import numpy as np
x= np.arange(12)
y=np.clip(x, 3, 11)
y
SAMPLE OUTPUT:
Array ([ 3, 3, 3, 3, 4, 5, 6, 7, 8,
9,10,11,11])
NUMPY CONCATENATE() IN PYTHON
v
The concatenate () function is a function from
the NumPy package. This function essentially combines NumPy arrays together.
v
This function is basically used for joining two
or more arrays of the same shape along a specified axis.
There are the following things which are
essential to keep in mind:
v
NumPy's concatenate () is not like a traditional
database join. It is like stacking NumPy arrays.
v
This function can operate both vertically and
horizontally. This means we can concatenate arrays together horizontally or
vertically.
The concatenate () function is usually written as
np.concatenate(), but we can also write it as numpy.concatenate().
SYNTAX:
numpy.concatenate((a1, a2, ...), axis)
SAMPLE
INPUT:
import numpy as np
x=np.array([[1,3],[2,4]])
y=np.array([[12,30]])
z=np.concatenate((x,y))
z
OUTPUT:
array([[ 1, 3],[ 2,
4],[12, 30]])
NUMPY.dot() in python:
v The
function is used to perform a product of two dot arrays.
v If both the arrays 'a' and 'b' are
1-dimensional arrays, the dot() function performs the inner product of vectors
(without complex conjugation).
v If both the arrays 'a' and 'b' are
2-dimensional arrays, the dot() function performs the matrix multiplication.
But for matrix multiplication use of matmul or 'a' @
'b' is preferred.
v If either
'a' or 'b' is 0-dimensional (scalar), the dot() function performs
multiplication. Also, the use of numpy.multiply(a,
b) or a
*b method is preferred.
SYNTAX:
Numpy.dot(a,b,out=None)
SAMPLE INPUT
import numpy as np
a=np.dot(8,12)
a
OUTPUT:
96
NUMPY FLOOR() IN PYTHON:
v
This function returns the floor value of the
input array elements.
v
The floor of a number x is i if i is the largest integer such
that, i<=x.
SYNTAX:
numpy.floor(array)
SAMPLE INPUT:
import numpy as np
in_array = [.5, 1.5, 2.5, 3.5,
4.5, 10.1]
print ("Input array :
\n", in_array)
floor off values = np.floor( in
array)
print ("\n Rounded values :
\n", floor off values)
in_array = [.53, 1.54, .71]
print ("\nInput array :
\n", in_array)
flooroff_values = np.floor(in_array)
print ("\n Rounded values :
\n", flooroff_values)
in_array = [.5538, 1.33354,
.71445]
print ("\n Input array :
\n", in_array)
flooroff_values =
np.floor(in_array)
print ("\n Rounded values :
\n", flooroff_values)
OUTPUT:
Input array:
[0.5, 1.5, 2.5, 3.5, 4.5, 10.1]
Rounded values:
[ 0. 1. 2. 3. 4. 10.]
Input array:
[0.53, 1.54, 0.71]
Rounded Values:
[ 0. 1. 0.]
Input array:
[0.5538, 1.33354, 0.71445]
Rounded
Values:
[ 0. 1. 0.]
NUMPY.FROMBUFFER()
v This
function is used to create an array by using the specified buffer.
SYNTAX:
numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)
PARAMETERS
It accepts the following parameters.
v buffer: It
represents an object that exposes a buffer interface.
v dtype: It
represents the data type of the returned data type array. The default value is
0.
v count: It represents the length of the
returned ndarray.
v offset: It represents the starting
position to read from. The default value is 0.
SAMPLE
INPUT:
import numpy as np
l = c'hello world'
print(type(l))
a = np.frombuffer(l, dtype = "S1")
print(a)
print(type(a))
OUTPUT:
[c'h' c'e' c'l' c'l' c'o'
c' ' c'w' c'o' c'r' c'l' c'd']
NUMPY HYPOT() METHOD:
v
This function is used to calculate the hypotenuse
for the right angled triangle
v The hypotenuse of the
right angle is calculated as:
SYNTAX
numpy.hypot(array1, array2 out)
PARAMETERS:
- array1: It is the input
array of bases of the given right angled triangles.
- array2: It is the input
array of perpendiculars of the given right angled triangles.
- Out: It is the shape of the
output array.
SAMPLE INPUT:
import numpy as np
base = [10,2,5,50]
per= [3,10,23,6]
print("Input base array:",base)
print("Input perpendicular array:",per)
hyp = np.hypot(base,per)
print("hypotenuse ",hyp)
OUTPUT:
Input base array: [10, 2, 5, 50]
Input perpendicular array: [3, 10, 23,
6]
hypotenuse[10.44030651 10.19803903 23.53720459
50.35871325]
NUMPY.LINSPACE()
v It is
similar to the arrange function.
v It only
returns evenly separated values over a specified period.
v The system
implicitly calculates the step size.
SYNTAX:
numpy.linspace(start, stop, num, endpoint, retstep, dtype)
PARAMETERS:
It accepts the following parameters
v start: It represents the starting value
of the interval.
v stop:It represents the stopping value
of the interval.
v num: The amount of evenly spaced
samples over the interval to be generated. The default is 50.
v endpoint: Its true value indicates that
the stopping value is included in the interval.
v rettstep: This has to be a boolean
value. Represents the steps and samples between the consecutive numbers.
v dtype: It represents the data type of
the array items.
SAMPLE
INPUT:
import numpy as np
arr = np.linspace(10, 20, 5)
print("The array over the given range is ",arr)
OUTPUT:
The array over the given range is
[10. 12.5 15. 17.5 20.]
NUMPY.MATLIB.ONES()
v This
function is used to return a new matrix with the values initialized to ones.
SYNTAX:
numpy.matlib.ones(shape,dtype,order)
PARAMETERS:
It accepts the following parameters.
v shape: It is the Tuple defining the
shape of the matrix.
v dtype: It is the data type of the
matrix.
v order: It is the insertion order of the
matrix.
SAMPLE
INPUT:
import numpy as np
import numpy.matlib
print(numPy.matlib.ones((3,3)))
OUPUT:
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]
numpy.mean() in python
v The sum of
elements, along with an axis divided by the number of elements, is known
as arithmetic
mean.
v The
numpy.mean() function is used to compute the arithmetic mean along the
specified axis.
v This
function returns the average of the array elements
v By default,
the average is taken on the flattened array. Else on the specified axis, float
64 is intermediate as well as return values are used for integer inputs
SYNTAX:
numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>)
SAMPLE CODE:
import numpy as np
a = np.array([[1, 2], [3, 4]])
b=np.mean(a)
b
x = np.array([[5, 6], [7, 34]])
y=np.mean(x)
y
OUTPUT:
2.5
13.0
EXAMPLE 2:
import numpy as np
a = np.array([[2, 4], [3, 5]])
b=np.mean(a,axis=0)
c=np.mean(a,axis=1)
b
c
OUTPUT:
array([2.5, 4.5])
array([3., 4.])
v
This module used to provide a numpy.save()
function.
v
To extention an array into a binary file in .npy
format
v
In many of the cases, we require data in binary
format to manipulate it.
SYNTAX:
numpy.save(file, arr, allow_pickle=True, fix_imports=True)
SAMPLE INPUT:
import numpy as np
from tempfile import TemporaryFile
out_file = TemporaryFile()
x=np.arange(16)
np.save(out_file, x)
_=out_file.seek(1) # Only needed here to simulate closing & reopening file
np.load(outfile)
OUTPUT:
array([ 1, 2,
3, 4, 5,
6, 7, 8, 9,
10, 11, 12, 13, 14,15])
NUMPY
STATISTICAL FUNCTIONS:
v
Numpy has quite a few useful statistical
functions for finding minimum, maximum, percentile standard deviation and
variance, etc. from the given elements in the array.
Function |
NumPy |
Min |
np. min() |
Max |
np. max() |
Mean |
np. mean() |
Median |
np. median() |
Standard deviation |
np. std() |
SAMPLE CODE:
SAMPLE INPUT:
Import NumPy as
np
normal_ array=np.
random. normal (5,0.5,10)
print (normal_
array)
OUTPUT:
[5.56171852 4.84233558 4.65392767 4.946659 4.85165567 5.61211317 4.46704244 5.22675736 4.49888936 4.68731125]
Example:
Statistical function
### Min
print (np. min(normal_ array))
### Max
print (np. max(normal_ array))
### Mean
print (np. mean(normal_ array))
### Median
print (np. median(normal_ array))
### Sd
print (np. std(normal_ array))
OUTPUT:
4.467042435266913
5.612113171990201
4.934841002270593
4.846995625786663
0.3875019367395316
Comments
Post a Comment